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LOCAL ST ABILITY OF HYDROSTATIC COMPRESSION STATES 
OF NON-LINEARLY THERMO-VISCO-ELASTIC BODIES OF DIFFERENTIAL TYPE* 

V.A. EREMEYEV 

The local Lyapunov stability of a hydrostatically stressed state of an 
isotropic, homogeneous, non-linearly thermo-visco-elastic body of 
differential type with complexity n and constant initial temperature is 
investigated in a dynamical formulation. The connection between the 
thermal and mechanical fields is taken into account. As a special case 
a model of an incompressible non-linearly visco-elastic body is 
investigated. Conditions that ensure the existence and uniqueness of 
generalized solutions of the linearized equations of motion and heat 
conduction and their vanishing with time are formulated. The example 
shows that violation of the conditions obtained can lead to the 
exponential growth of the solution. 

In the investigation of the local stability of hydrostatically stressed states fHSSs) 
of non-linearly elastic bodies by static methods /l, 2/ the absence of adjacent equilibrium 
forms came to the force as a necessary requirement placing restrictions on the form of the 
equation of state of the material. The stability of the solutions of the equilibrium equations 
of non-linear v&co-elastic bodies with integral defining relations has been investigated 
f3-5/. The conditions for the stability of an HSS of a visco-elastic body were obtained in 
/4/. The influence of the temperature field was taken into account in /5/. On the basis of 
the theory developed in /6/, the behaviour with time of solutions of the equations of motion 
of linear visco-elastic bodies of differential type has been investigated /7/. 

1. The fundamental relations describing a homogeneous isotropic non-linearly thermo- 
visco-elastic body of differential type with complexity n have the form /8/ 

II, =%‘(G, 0), q = -~lp/~e(G, Cl), T = TO@, F) + T,(@, F, A,, . . _ (1.1) 
Ad 

T, = ZpC=-+/iiG4, h = h(8,1 CB, F), G =C.Cr, F =CT.C 

Nere $ and n are the mass densities of the free energy and entropy, T is the Cauchy 
stress tensor, T, and Tz are the equilibrium and dissipative stress tensors, his the heat 
flux vector, 8 is the temperature, C is the deformation gradient, G and F are the Cauchy- 
Sreenand Finger deformation measures,p is the denisty of the body in the current configuration, 
V is the gradient operator in the current configuration, and the A, (k = l,...,n) are Rivlin- 
Ericksen tensors, defined by the formula /9/ 

A* = C-~.(d'GldtX)O-, k = 1, , . ., n (1.2) 

Instead of the tensors Ak one can use other indifferent tensors characterizing the 
deformation velocities in relations (1.1). The tensor T, vanishes for Ak = 0 (k = 1, . . . . n). 

When considering a purely mechanical theory one uses a model of an incompressible visco- 
elastic material with defining relations for the Cauchy stress tensor of the form 

T = --pE +T,(F)+ T,(F, A,, . ..t A,) (I.31 

where p is the unknown function determined from the equations of motion and the incompress- 
ibility condition d&G = 1, and E is the unit tensor. 

An equilibrium state of the body which is in an HSS and has a uniform temperature field 
will be called a (p, 60) -configuration. A (p, @'}-configuration of an isotropic body 
satisfies the relations T = -pE,8 = W,C = tQ, G = F = E'E,Ak =O and h =O, where 
Q is a proper orthogonal tensor and O( Z< 1. For an incompressible material 1 = 1. 

In order to investigate the stability of this state, the equations of motion and heat 
conduction are linearized about the (p, Q") -configuration. In the metric of the deformed 
state the linearized equations have the form /l, 91 
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V.II=pd,*w, II=ST+TtrL-L'.T, L=Vw (1.4) 

6T= -$T(R+Ew,@“+E~~)I~-~, a,=-$- 

Here R is the radius-vector in the (p, W) -configuration, w is a small additive dis- 
placement vector field and 0 is the temperature shift. The symbol 6 denotes linear per- 
turbations caused by the displacements and temperature shifts. 

Linearizing the Rivlin-Ericksen tensors in the neighbourhood of the (p, 8-j configuration 
we obtain 

6.4, = 28,%, 2e= L + LT 

Following f2/, we transform the equations of motion linearized in the neiqhbourhood 
the (p,(Y) -configuration to the form 

V.S = p&2w, S = 6T - S2.T + T.Q, 252= Lr - L 

(1.5) 

of 

(1.6) 

Taking account of relations (1.1) and (1.5) and the isotropy conditions, one can show 
that S is a linear isotropic function of the tensors ~3,'s (k = O,..., n) and 6: 

S = A (a,) tr eE + 2M (8,)s - a (I) BE (1.7) 

Relations (1.7) define the response of the material to small deformations near the HSS. 
For an incompressible body 

S = --6pE + 2M (3,)s (1.8) 

where &p is an unknown function of the coordinates, for which the linearized incompress- 
ibility condition V.W = 0 serves as a supplementary defining condition. 

To obtain linearized heat-conduction equations we consider the energy-balance equation 
in the case when there are no bulk heat sources /8-12/: 

pd (JI + ~~)~~~ = -C.h + tr (T.V~/~~) 

Using relation (l.l), this equation can be transformed to the form 

p0dnidt = -V.h + tr (T,.VdR/dt) 

The last term on the right-hand side of this equation describes the specific dissipation 
of energy /9, 12/ for non-linear thermo-visco-elastic bodies of differential type. The 
presence of the dissipative term distinguishes the energy-balance equation under consideration 
from the heat-conduction equation for non-linear thermo-elastic bodies. Taking account of 
relation (1.1) and the material isotropy condition, we write down expressions for the entropy 
and heat flux vector linearized in the neighbourhood of the (p, Be)-configuration: 

$1 = c(l)@ + a(I)V.w, 6h = -x(1)6V 

In a small neighbourhood of the (p,W)-configuration the dissipative term in the heat- 
conduction equation, which vanishes in that configuration (because in equilibrium configur- 
ations, of which the (p,80)-configuration is a special case, T, and dRldt are both zero), 
has second order of smallness compared with the other terms and vanishes on linearization. 
The last linearization is of the heat-conduction equation in a neighbourhood of the (P, @“I- 
configuration, and has the form 

C (I) WC?,6 = x (2) v.ve - a(I) @"&V.w (1.9) 

The derivation of the non-linear heat-conduction equation and its linearization about 
an unstressed state of visco-elastic bodies of differential type 1 was performed in /12/. 
The form of the linearized heat-conductionequation obtained in /12/ is similar to (1.9). 

The quantities c(l) and x(Z) will be regarded as positive. The initial temperature 8" 
will without loss of generality be taken to be equal to unity. 

The linearized boundary conditions on the surface of the body r: = x,u c, u x,=x* IJ 

z, have the form /2! 

w Ix, = 0, N.S Jr, = 0, N .w Is, = 0 (1.10) 

N.S.(E - NN) 1% = 0, 6 Is, = 0, N.VB $ L 0 

(where N is the normal to'the surface of the body). The Z, component of the surface of the 
body is completely fixed, a uniform hydrostatic pressure is assigned to the component x,, on 
Z, the body is in contact with a smooth solid surface, the temperature is specified on Z, 
and the heat flux on C,. 
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The initial conditions for wand 0 are written as follows: 

atkW It=,, = Wk, k = 0, . . ., N E max (1, n - 1), tl llzO = 0,, (1.11) 

A solution of the resulting initial-boundary value problems will be sought in the form 

w=-u+x(t) FGWk, 
k=i 

e=r+X(t)eo 

where the infinitely differentiable function x(t) = f in the neighbourhood of 
0 for t>i. The functions u and r satisfy homogeneous initial and boundary 
and inhomogeneous equations of motion and heat conduction with some fictitious 
f and "heat sources" q. 

zero and x(t) = 
conditions 
"body forces" 

2. To investigate the resulting initial-boundary value problems we will use the Laplace 
transformation (with s as the transform parameter). 

As in /7/ we introduce the following spaces. 
Suppose H is some separable Hilbert space. 

& (V? H) (where k is an integer and y> 0) is the space of functions with values in H 
> analytic in the half-plane Res>y and with finite norm 

pk (I’, HI is a complex space of functions g (t) with values in H, possessing general- 
ized derivatives /lo/ on LO, +-) up to order k inclusive, such that &'"g = 0 for t=O 
(0 < m < 4 , and a finite norm 

llgII:k=ife-~v~ i llarmgllE?dt 
0 m=o 

A theorem has been proved /7/ to the effect that the Laplace transformation operator 
continuously maps the space Pk(y, H) (where k>O is an integer and r>O) onto the 
space Ek (y.H), and that it is continuously invertible and that its inverse serves as the 
inverse Laplace transform operator. 

Below we shall need the following assertions. 

Lemma 2.1. Suppose the roots of the polynomial P (s) =po + p,s 4- +p,,s* lie in the 
left half-plane of the complex plane and p,,>O, then for Res)O we have the inequality 
1 P (s) ( > dp,, (1 + 1 s I”)“, where d< 1. 

The proof follows from expanding the polynomial p (4 in simple factors and the in- 
equalities 1 s-skj > d(l + 1 s 12)" with d<l for Res,(O. 

3. We will consider the first initial-boundary value problem for a compressible thermo- 
visco-elastic body (1.6), (1.71, (1.9), (1.10) (with Z = Z, = Z,), which for brevity we 
shall call problem A. 

Let HI be the space of complex-valued functions formed by the closure of the set of con- 
tinuously differentiable functions equal to sero on the boundary o, in the norm 

[IrIb, = sll VT.VTdo 

Here and below we shall not specify the domain of integration of o. H, is the space of 
vector functions each of whose components belong to H,. It is obvious that H, = W,“(‘) and 
H, = W9N1)Wz"(l) x w,o('). 

Applying a Lapiace transformation to problem A one obtains a boundary-value problem with 
a parameter - problem B. We shall call " (4 E H,, r (4 E H, a generalized solution of 
problem B, if for arbitrary functions gEH, and cp~H, we have the equalities 

JS~{M(s)Vv**Vgr + [M(s)+ ‘4 (s)lV.vV.jj + 
ps2v.g - cd.2 - F.g) do = 0 

j j jIxvz.v+ + c..@ -a.sv.Vcp-QiJ]do=O 

(F = Lf E E, (O,, HB-I), Q = Lq E E, (0, HI-‘)) 

(3.1) 

(3.2) 

We shall perform the proof of the existence of a generalized solution to problem B in 
two stages. Regarding the vector v as given, we will investigate the problem of finding the 
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temperature, taking as the definition of the solution the satisfaction of relation (3.2) by 
any function rp6ZRH,. Using the Riesz theorem, Eq.(3.2) can be represented in the form of an 
operator equation in the space HI: 

The operator K acts continuously from HI-’ into HI and the operator K, acts con- 
tinuously from L, into H,. One can show that NK,il = 1. 

Lea 3.1. Suppose v~ E,(O, LJ. Then Eq.(3.3) is uniquely soluble for Res>O and 
its solution can be represented in the form 

r = rr + ra, 21 E E, (0, H,), zp E E,-I ((4 HI) f-l .% (0, L3 

Proof. We have the following equalities: 

(A 6) 7. Z)_Pf, = PO (s) (7, 'Is, = PI (8) (7, ?)I., 

(PO (8) = x -c cks, P, (s) = CB + k-k, k = 11 ‘C fl”L.11 T !];I”, 

The parameter k.s(O,V), where the quantity k” depends on the domain e. 
Using Lemma 2.1, the inequality 

I (-4 (4 =, %f, I > 5 (4 u 7 &9 I t-4 (4 r, “)a, I > XII 7 I& 
I; (8) = min (c, x/k*) (1 +  1 s 18)” 

(3.4) 

follows from the relations obtained when Res>O. 
It follows from (3.4) that Eq.(3.3) is properly solvable and the operator A (s) has a 

continuous inverse A” (8). It is clear that the operator conjugate to A(r) is A (Z). One 
can show that the equation with the conjugate operator is properly solvable. From this it 
follows /14/ that Eq.(3.3) is solvable everywhere for Res>O. The operator A (s) is an 
entire operator-valued function. The analyticity of r(6) in the domain of analyticity of 
Q, for Res>O follows from the continuity of A-‘. 

We denote by 7, and 'T$ the solutions of Eq.(3.3), respectively, corresponding to the 
first and second terms in the expression for cp. The concluding estimates of the proof 
follow from inequalities (3.4): 

Using the results of Lemma 3.1, Eq.(3.1) can be presented in the form of an operator 
equation in the space H,: 

B (s) v = B, (s) v - a%-K, (s) v = K,F + F’ 

&, (s) v = M (s) v + [IM (s) + A (s)l K,v + @K,v 

(Ku,, v, g}x, = ~~~v*v~.~gd~, fK,v, g)z,=sj.! v-jjdm 

(K,v, @s,=& s 15 zzV*B do, (F’, &I, =a 
SPS 

z,‘i .k do 

(3.5) 

The operator K, is continuous and positive, and takes H, into H,. It is known /15/ that 

II&If = 1. The operator K, takes Ha-' continuously into Hz. The operator k;(s) takes 

HP continuously into H, and is completely continuous. The complete continuity of K, is 
a consequence of the inequality 

II K* (8) v hr. < 4 (1 + I s IV II v Ik. 

which is obtained from the estimate for ze in the space L, which was pointed out in Lemma 
3.1 together with Sobolev's imbedding theorem. Here and below the dk are arbitrary positive 
constants. 

& (a) satisfies the equality 

The stability requirement on the polynomial p (a) for all k,, k, in their domains of 
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variation was put forward by /7/ as a sufficient condition for the soiubility of Bq.13.5) 
with a =O. The solubility of Eq.(3.5) with a#0 is given by the following lemma. 

Lemma 3.2. Suppose the polynomial P(s) is stable, i.e. its roots have strictly 
negative real parts. Then a number a*> 0 exists such that for /a !(a* Eq.(3.5) is 

uniquely soluble for Res) 0 and the solution v(s)= &(O, Ha). 
The proof is similar to the proof of Lemma 3.1 and is based on an a priori estimate. 

B (4 satisfies the equality 
(B (s) v,v)~,= P (8) (V, V)H,- a's& (4 v. dn, 

from which for Res>O there follows a necessary estimate for sufficiently small a: 

It is clear that the inequality obtained is satisfied for sufficiently small or large 

181 independently of a. 
In the case n = I,2 an a priori estimate can be obtained independently of a. To do 

this the vector g in Eq.(3.1) is set equal to sv, in (3.2) v =:z, and relation (3.11 is 
added to the complex conjugate of (3.2), leading to the equality 

which, using previously obtained inequalities with Res> 0, leads to a necessary estimate 
on v and r independently of a. 

The solution estimates can be strengthened if one makes additional smoothness assumptions 
about the initial conditions. In particular, suppose wk and go are such that f6z k?(o) 
and g6z L,(w), then, using the results of Lemmas 3.1 and 3.2, and properties of the operators 

A (4 and B (s), one can show that 

v E E, (0, L,), T E E,(O, Lt), m = niax (2, n) 

The results obtained prove the existence and uniqueness of the generalized solution of 
problem B. Application of the theorem from /7/ cited in Sect.2 now guarantees the existence 
and uniqueness of a solution of problem A in the following sense: for every pair of infinitely 
differentiable functions g(f)EH, and (P(~)E HI which vanish when t is larqer than a 
certain number depending on g and 'P, the solution u (t), T (6) satisfies the equation 

We have thus proved the following theorem. 

Theorem 3.1. Suppose w~EH$, So E H,, and the polynomial P(s) is stable. Then there 
exists a* > 0 (for n = 1, 2, a* =M) such that for 10~ \(a* problem A has a unique 
generalized solution u CZ P,_I(Q, fi,) and 7~5 P,(O,H,). If wx,So are such that f E L* 
and qEL*, then rnfz Pm(O,&} and r=P, (0, Lz) where m = max (2, n). 

A sufficient condition for the local stability of a (p, ey -configuration follows 
directly from Theorem 3.1. 

Theorem 3.2. Suppose that the conditions of Theorem (3.1) are satisfied. Then for 
la(<a* the solution of the initial-boundary value problem (1.6), (l-7), (l-9)-(1.11) is 
asymptotically stable in the following sense: 

where k =O, . . .,n; i&O,..., m; j=O,l; and 

II a,'-1 w IIH, + 0, II at”+ 114 + 0. II 0 Ilr, --)r 0, t-+02 

uniformly in t. 
The last assertion of Theorem 3.2 follows from the inequality /13/ 
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For certain conditions on the set of initial data one can make more precise the manner 
in which e(t) tends to zero. In particular, if Wkr % are such that q=o, (for 

example, V.Wk = 0 and 0, = 0), then with the conditions of Theorem 3.1 one can show that 

e E Pm-1 (0, H1) r-l P7n (0, LB). 

4. All the results presented above can be directly carried over to other initial-boundary 
value problems for compressible thermo-visco-elastic and incompressible visco-elastic bodies. 
Here we will merely note the necessary chanqes in the formulations of the theorems of Sect.3. 

In the case of a mixed boundary-value problem for a compressible thermo-visco-elastic 
body the space H, is replaced by H,, where H, is the closure of vector functions con- 

tinuously differentiable in o, satisfying homogeneous kinematic boundary conditions (w IzI = 0, 
N.w Iz. = O), such that w satisfies Kern's inequality /16/ in the norm induced by the scalar 

product 

(w,u)~,=SSS~(w)..e(u)do 

The polynomial P(s) is replaced by P'(s) = 2M(s) + A(s)k, -f pk.#. The parameter k,E 

(0, 31 as a consequence of the inequality II V.w IIL, < v3 II w II&. 
If the boundary conditions allow rigid-body displacements of the body, the assertions of 

Theorems 3.1 and 3.2 with the above changes hold only for the "deformation" part of the dis- 
placement orthogonal in H, to the rigid displacement vectors. 

In the same way one can investigate the case of more general thermal boundary conditions. 
The initial-boundary value problem for an incompressible visco-elastic body is treated 

similarly. Here the spaces Hz and H, are obtained by the closure in corresponding norms 
of solenoidal vector functions, i.e. those vector functions satisfying the condition V.w = 0. 

For the first boundary-value problem P(s) = M(s) -I- pk$, and for the others P'(s) = 2M(s)+ 
pk,$. 

Analysis of the properties of the polynomials P(S) and P' (s) shows that a necessary, 
and for I&= 1,2 also a sufficient, condition for the asymptotic stability of a (Pt w- 
configuration is that the inequalities pk > 0, Ak + 2pk > 0 (k = 0, . . ., n) for the first 
boundary-value problem and pk> 0,3hk + 2pk>0 for all boundary-value problems with 1E(O,l]. 
In the case of an incompressible body these boundary conditions are the inequalities pk > O. 

These inequalities impose definite restrictions on relations (1.7) and (1.8) defining the 

response of the material to small deformations near the HSS. 
The restrictions imposed by the conditions of Theorem 3.1 for n> 2 on a are, in 

general, necessary. 
As an example we will consider the problem of the stability of a rectangle with sides 

a, b, in contact over its entire surface with a smooth rigid surface and with Neumann con- 

ditions on the temperature (Z = Z,= X,). A solution W= I&+ vi,,0 satisfying the boundary 
conditions is sought in the form 

Substituting this into Eqs.(l.6), (1.9) we obtain a linear homogeneous system of algebraic 

equations in "*m* Vnm and 8,,. The condition for its non-trivial solubility can be shown to 

be the vanishing of the expression 

D (V, p, a) = [pv’ + PM @)I (a’i+ + (fl + 4) lpv’ + B (11 (v) + uf WI1 
v = Y,,, fl = (mw + (nmlb)’ 

If the equation D(v, f&a)= 0 has a root %'k with positive real part, this means that the 
problem has an exponentially increasing solution and therefore the (p,W)-configuration is 
Lyapunov-unstable for the rectangle. It is clear that for a=0 the stability requirement 
for all p is equivalent to the stability requirement of the polynomial p (v) in the con- 
ditions of Theorem 3.1. 

One can show that fern= 1,2 a necessary and sufficient condition for the stability of 

D (v, B. o.) for all p and a is the satisfaction of the inequalities AI, + 2Qk > 0, Pk > 0 (k = 0, 

.( 2). Analysis of the stability of the polynomial D(v,fi,a) for n= 3 shows that for some 

a* (B) the Hurwitz stability criteria for D(v,6.a) are violated. 
Via the parameter p the critical parameter a* also depends on the dimensions of the 
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domain. One can show that a* =0(b) for 0-m and a* = 0 (o-") for B-0. Unlike the 
conditions on hr and pk, the restrictions on c for n>2 cannot be considered as a 
restriction on the defining relations for thermo-visco-elastic bodies in the case of small 
deformations (1.7) because the constant a* also depends on the domain occupied by the body. 

The authors thank L.M. Zubov and L.P. Lebedev for their help with this paper. 
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